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Abstract. Classification tasks often involve a large number of features, where
irrelevant or redundant features may reduce the classification performance. Such
tasks typically requires a feature selection process to choose a small subset of
relevant features for classification. This paper proposes a new representation in
particle swarm optimisation (PSO) to utilise statistical clustering information
to solve feature selection problems. The proposed algorithm is examined and
compared with two conventional feature selection algorithms and two existing
PSO based algorithms on eight benchmark datasets of varying difficulty. The ex-
perimental results show that the proposed algorithm can be successfully used
for feature selection to considerably reduce the number of features and achieve
similar or significantly higher classification accuracy than using all features. It
achieves significantly better classification accuracy than one conventional method
although the number of features is larger. Compared with the other conventional
method and the two PSO methods, the proposed algorithm achieves better perfor-
mance in terms of both the classification performance and the number of features.

Keywords: Particle swarm optimisation, Feature selection, Classification, Rep-
resentation.

1 Introduction

In recent years, with the advances of data collection techniques, machine learning
and data mining tasks such as classification often include a large number of fea-
tures/variables. This causes the problem of “the curse of dimensionality” and leads to
many issues, e.g. learning/classification algorithms fail to achieve satisfactory accuracy,
the classification process is time-consuming, and the trained classifier is too compli-
cated to understand/interpret. Feature selection can address these issues by removing
irrelevant/redundant features and selecting only a small subset of relevant features for
classification [8].

Feature selection is a challenging task due to the large search space and feature inter-
action problems. The size of the search space is 2n for a dataset with n features [8]. Ex-
isting feature selection algorithms, such as greedy search based algorithms [11], suffer
from stagnation in local optimal and/or high computational cost. Therefore, an efficient
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global search technique is needed to address feature selection problems. Evolutionary
computation (EC) techniques are a group of powerful “global” search algorithms and
have been successfully applied to a variety of fields [9]. Particle swarm optimisation
(PSO) [13, 19] is an EC technique based on social intelligence, which has fewer param-
eters and is computationally less expensive than other EC techniques, such as genetic
programming (GP) and genetic algorithms (GAs). PSO has been recently used to ad-
dress feature selection problems and shown a certain level of success [27].

Feature interaction is a common and complex problem in classification tasks [8]. Be-
cause of feature interaction, an individually relevant feature may become less useful or
redundant when combined with other features. On the other hand, a weakly relevant fea-
ture may become highly useful when used together with other features. In an “optimal”
subset, features are expected to be complementary to each other and can work together
to increase the classification performance. Therefore, during the feature selection pro-
cess, the removal or addition of features needs to consider the appearance or absence of
other features, which increases the difficulty of feature selection tasks. Finding a way
to cope with feature interaction problems is expected to increase the performance of
a feature selection algorithm. Meanwhile, feature interaction is also an important is-
sue being considered in statistical data analysis. We generalise the statistical clustering
method [15, 17] by taking feature interaction into account to group relatively homoge-
neous features into clusters. Intuitively, these ideas could be useful to address feature
interaction problems in feature selection, but this has not been seriously investigated.
The main challenge is how to incorporate the statistical clustering information in the
feature selection process.

1.1 Goals

The overall goal of this paper is to develop a new representation scheme to incorpo-
rate the statistical clustering information in PSO for feature selection. To achieve this
goal, a statistical clustering method as a preprocessing step is performed on the training
set to group features into different clusters. A new representation scheme is developed
to utilise such statistical clustering information to improve the performance of PSO
for feature selection. A new algorithm using the new representation is then developed
and compared with two existing PSO based feature selection algorithms and two con-
ventional algorithms on eight datasets with different numbers of features, classes and
instances. Specifically, we will investigate:

– whether the new algorithm can be used to reduce the number of features and in-
crease the classification performance,

– whether the new algorithm can utilise the statistical clustering information to achieve
better performance than the two existing PSO based feature selection algorithms,
and

– whether the new algorithm can achieve better performance than the two conven-
tional feature selection algorithms.
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2 Background

2.1 Particle Swarm Optimisation (PSO)

Particle swarm optimisation (PSO) [13, 19] is an evolutionary computation method,
which is inspired by social behaviours such as birds flocking and fish schooling. In
PSO, candidate solutions are represented by a population or a swarm of particles. In
order to find the optimal solutions, each particle moves around the search space by
updating its position as well as its velocity. Particularly, the current position of particle
i is represented by a vector xi = (xi1, xi2, . . . , xiD), where D is the dimensionality of
the search space. These positions are updated by using another vector, called velocity
vi = (vi1, vi2, . . . , viD). During the search process, each particle maintains a record
of the position of its previous best performance, called pbest. The best position of its
neighbours is also recoreded, which is called gbest. The position and velocity of each
particle are updated according to the following equations:

vt+1
id = w ∗ vtid + c1 ∗ ri1 ∗ (pid − xt

id) + c2 ∗ ri2 ∗ (pgd − xt
id) (1)

xt+1
id = xt

id + vt+1
id (2)

where t denotes the tth iteration in the search process, d is then dth dimension in the
search space, i is the index of particle, w is inertia weight balancing the global and local
search abilities, c1 and c2 are acceleration constants, ri1 and ri2 are random values
uniformly distributed in [0,1], pid and pgd represent the position value of pbest and
gbest in the dth dimension, respectively.

2.2 Related Work on Feature Selection

Existing feature selection algorithms can be generally classified into two categories,
filter approaches and wrapper approaches [8, 28]. Their main difference is whether a
classification/learning algorithm is used during the feature selection process. A wrap-
per algorithm typically includes a classification algorithm to measure the classification
performance of the selected features to evaluate the goodness of the selected features.
Filter approaches are independent of any classification algorithm. Filter approaches are
argued to be computationally cheaper and more general than wrappers, but wrapper
approaches can usually achieve better classification performance than filters due to the
interaction between the selected features and the classification algorithm. This work
focuses mainly on wrapper feature selection. In this section, typical wrapper feature
selection algorithms and the use of statistics in feature selection are briefly reviewed.

Traditional Feature Selection Methods. Sequential forward selection (SFS) [22] and
sequential backward selection (SBS) [14] are two commonly used wrapper feature se-
lection algorithms. Both of them use a greedy hill-climbing search strategy to search
for the optimal feature subset. However, both SFS and SBS suffer from the so-called
nesting effect, which means that once a feature is selected (discarded) it cannot be dis-
carded (selected) later. Therefore, both SFS and SBS are easily trapped in local optima.
In addition, both SFS and SBS require long computational time when the number of
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features is large. In order to avoid nesting effect, Stearns [20] proposed a “plus-l-take
away-r” method in which SFS was applied l times forward and then SBS was applied
for r back tracking steps. However, determining the best values of (l, r) is a challenging
task.

Later, Pudil et al. [18] proposed two floating selection methods, sequential backward
floating selection (SBFS) and sequential forward floating selection (SFFS) to automat-
ically determine the values of (l, r). In addition, the values of (l, r) in SBFS and SFFS
that denotes the number of forward and backtracking steps are dynamically controlled
instead of being fixed in the “plus-l-take away-r” method. Although the floating meth-
ods are claimed to be at least as good as the best sequential method, they are still likely
to become trapped in a local optima even the criterion function is monotonic and the
scale of the problem is small. Meanwhile, based on the best-first algorithm and SFFS,
Gutlein et al. [11] proposed a linear forward selection (LFS) in which the number of
features considered in each step is restricted. Experiments show that LFS improves the
computational efficiency of sequential forward methods while maintaining comparable
accuracy of the selected feature subset. However, LFS starts with ranking all the in-
dividual features without considering the presence or absence of some other features,
which in turn limits the performance of the LFS algorithm in problems where there are
interactions between features.

EC Approaches to Feature Selection. EC algorithms have been applied to feature se-
lection problems, such as PSO, GAs [31], GP [16], ant colony optimisation (ACO) [12]
and differential evolution (DE) [1]. Zhu et al. [31] proposed a feature selection method
using a memetic algorithm that is a combination of local search and GA. Experiments
show that this algorithm outperforms GA alone and other algorithms. Neshatian and
Zhang [16] proposed a GP relevance measure (GPRM) to evaluate and rank feature sub-
sets in binary classification tasks. Experiments show that the proposed method detected
subsets of relevant features in different situations, where other methods had difficulties.
Based on ACO, Kanan and Faez [12] developed a wrapper feature selection algorithm,
which outperforms GA and other ACO based algorithms on a face detection dataset, but
its performance has not been tested on other problems. Al-Ani et al. [1] also proposed
a DE based feature selection method, where features are distributed to a set of wheels
and DE is employed to select features from each wheel. This algorithm can significantly
reduce the number of features and improve the classification performance.

Recently, BPSO has been applied to feature selection problems. Yang et al. [30]
proposed two BPSO based wrapper feature selection approaches based on two inertia
weight setting methods. The results show that the two algorithms can outperform SFS,
SFFS, sequential GA and different hybrid GAs. Fdhila et al. [10] applied a multi-swarm
PSO algorithm to solve feature selection problems. However, the computational cost of
the proposed algorithm is high because it involves parallel evolutionary processes and
multiple sub-swarms with a relative large number of particles. Xue et al. [27] proposed
a PSO based two-stage feature selection algorithm to optimise the classification perfor-
mance in the first stage and consider the number of features in the second stage. Chuang
et al. [7] applied the so-called catfish effect to PSO for feature selection, which is to in-
troduce new particles into the swarm by re-initialising the worst particles when gbest
has not improved for a number of iterations. The authors claimed that the introduced
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Representation 1: X2 X3 X4 X5 X6 X8 X9 ... ... ... ... XN-1 XNX1 X7 X10

X1,2 ... X1,N1 X2,2 ... X2,N2 X3,2 ... X3,N3 X4,2 ... X4,N4

X1,1 ... X1,mSN1 X2,1 ... X2,mSN2 X3,1 ... X3,mSN3 X4,1 ... X4,mSN4

Representation 2:

New Representation:

X3,1X1,1 X2,1 X4,1

Fig. 1. Example of N features that are grouped into 4 clusters with N1, N2, N3 and N4 features,
respectively, then N = N1 + N2 + N3 + N4. mSNj is the predefined maximum number of
features selected from cluster j and mSN1 < N1, ..., mSN4 < N4.

catfish particles could help PSO avoid premature convergence and lead to better re-
sults than sequential GA, SFS, SFFS and other methods. Xue et al. [29] developed new
initialisation and pbest and gbest updating mechanisms in PSO for feature selection,
which can increase the classification accuracy and reduce both the number of features
and the computational time. Other PSO based feature selection methods can be found
from [4–6, 24–26, 29].

Many statistical methods can be used to reduce the dimensionality of a dataset, such
as principal component analysis, linear discriminant analysis, or canonical correlation
analysis [3], but most of them are not feature selection approaches because they create
new features. Clustering analysis is an important topic in statistics which aims to group
features/variables to a number of clusters. We use the statistical clustering method [15,
17] to find relatively homogeneous feature groups by taking feature interactions into
account. Therefore, the statistical grouping information could be used to develop a good
feature selection algorithm.

3 Proposed Algorithm

In this section, a new representation scheme is proposed in PSO for feature selec-
tion to utilise the statistical clustering information to reduce the number of features
selected and increase the classification performance. A newly developed clustering
method based on statistical models proposed by Pledger and Arnold [17] and Mate-
chou et. al. [15] is used to group features into different clusters. Features in the same
cluster are considered similar and features in different clusters are dissimilar to each
other. The technical detail of statistical clustering methods is not described here due to
the page limit and the scope of this paper.

Fig. 1 shows three different types of representations, where a dataset with N fea-
tures which can be grouped into 4 clusters is used as an example. N1, N2, N3 and N4

show the numbers of features in the 4 clusters, respectively. Representation 1 shows
the traditional way of using PSO for features selection without considering the feature
clustering information. Representation 2 and the proposed new representation consider
the feature clustering information. Representation 2 is different from Representation
1 by putting features in the same cluster together. The new representation is different
from Representations 1 and 2 in two main aspects. The first is the dimensionality of
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the particles (search space). In Representations 1 and 2, the dimensionality equals to
the total number of features, although Representation 2 considers the feature cluster-
ing information. In the new representation, the dimensionality equals to

∑

1≤j≤4

mSNj ,

where mSNj shows the predefined maximum number of features selected from the jth

cluster. The second difference is the meaning of each element in the position vector.
In Representations 1 and 2, each element (e.g. xi or xj,k) determines whether the cor-
responding feature is selected or not. In the new representation, each element shows
which feature is selected from the corresponding cluster. Therefore, in this new repre-
sentation, two important tasks are how to determine the value of mSN for each cluster
and how to determine which features are selected from a cluster. They will be described
as follows.

3.1 How to Determine mSNj

Since the features from the same cluster are similar features, a small proportion of these
features can be used as the representatives of this cluster. However, it is difficult to
determine how many features should be selected from each cluster. Selecting a large
number of features may contain redundant information while selecting a small number
of features may deteriorate the classification performance. Therefore, in the new repre-
sentation, we propose the use of mSNj , which means the maximum number of features
selected from the jth cluster, to limit the number of features selected. The algorithm is
expected to search for a feature subset which contains fewer than mSNj features from
cluster j, but can achieve better performance than using all features in cluster j. Since
the sizes of clusters are usually different, the value of mSNj should vary in different
clusters.

mSNj =
√
Nj (3)

Fig. 2 compares three different ways to determine mSNj , which are a square root
function of Nj shown as Eq. 3, a constant value, and a linear function of Nj . As can be
seen from the figure, Eq. 3 allows selecting more features from a cluster that contains
a larger number of features, which cannot be done by the constant function. On the
other hand, Eq. 3 is preferred over the linear scaling function, since it leads to a smaller
number of selected features from large feature clusters, which is more likely to include
redundant features. The smaller mSNj in Eq. 3 may reduce the chance of selecting
those redundant features. Therefore, in this work, Eq. 3 is used to determine the value
of mSNj .

3.2 How to Select Features

In traditional representation, the position value determine whether a feature is selected
or not, which is usually determined by a threshold. If the position value is larger than
the threshold, the corresponding feature is selected. Otherwise, it is not selected. In
the new representation, the position value in a dimension determines which feature is
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Fig. 2. Three different ways of determining mSNj

selected from a certain cluster. To achieve this, the position value is limited to [0,1].
For the dimensions corresponding to the jth cluster, [0, 1] is equally divided into (Nj+
1) intervals, where Nj is the total number of features in the jth cluster. Each interval
corresponds to one feature in the cluster, which ensures that features in the same cluster
has the equal chance to be selected. A feature is selected if the position value falls
into its corresponding interval. There are (Nj + 1) intervals rather than Nj intervals
because a virtual feature, called “Null” feature, is introduced to each cluster. The “Null”
feature allows the selection of zero feature from a cluster if all features in that cluster
are irrelevant or redundant.

f1 f2 f3 f4 Null

0 0.2 0.4 0.6 0.8 1.0

Fig. 3. Intervals for selecting features (Not PSO positions)

Fig. 3 takes a cluster with four features (f1, f2, f3, f4) showing the intervals for
selecting features. As can been seen in Fig. 3, the interval [0,1] is further divided into
five intervals, where four of them corresponds to the four features while the last interval
corresponds to the “Null” feature, i.e. no feature is selected. Suppose that its mSN1 = 2
and the position values are {x1,1 = 0.5, x1,2 = 0.96}. As x1,1 ∈ [0.4, 0.6], which is
the interval of Feature f3, f3 will be selected. Similarly, x1,2 ∈ [0.8, 1.0] that belongs
to Null feature, which means that no feature is selected. So the values are interpreted
as selecting only feature f3 from the cluster. Eq. 4 shows a general case of how to
determine which feature or no feature is selected from cluster j, where x is the position
value in a dimension.

Feature =

{
fk, if x ∈ [ k−1

Nj+1
, k
Nj+1

],where k ∈ [1, Nj ]

Null feature, if [
Nj

Nj+1
, 1]

(4)
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Algorithm 1. Pseudo-code of PSOR

begin
indexing features in each cluster;
define mSN for each cluster according to Eq. 3;
randomly initialise the position and velocity of each particle;
while Maximum iterations is not reached do

Collect the features selected by each particle;
evaluate the fitness of each particle according to its classification accuracy;
for i = 1 to Population size do

update pbest and gbest of particle i;

for i = 1 to Population size do
update vi of particle i according to Eq. 1;
update xi of particle i according to Eq. 2;

calculate the training and testing classification accuracy of the selected feature
subset on the test set;
return the position of gbest, the training and testing classification accuracies;

3.3 Pseudo-code of the Algorithm

By using the proposed representation, a new feature selection algorithm is proposed,
which is named PSOR. The pseudo-code of PSOR is shown in Algorithm 1. The fitness
function of PSOR is to maximise the classification accuracy of the selected features.

Table 1. Datasets
Dataset NO. of features NO. of clusters NO. of classes No of instances
Wine 13 6 3 178
Vehicle 18 6 4 846
Ionosphere 34 11 2 351
Sonar 60 12 2 208
Musk1 166 14 2 476
Arrhythmia 279 15 16 452
Madelon 500 11 2 4400
Multiple Features 649 15 10 2000

4 Experimental Design

To examine the performance of the proposed algorithm PSOR, two traditional feature
selection methods, which are linear forward selection (LFS) [11] and greedy stepwise
backward selection (GSBS), and two existing PSO based feature selection algorithms
(PSOFS [27] and PSO42 [29]) are used for comparison purposes in the experiments.
LFS and GSBS were derived from two typical feature selection algorithms, i.e. sequen-
tial forward selection (SFS) and sequential backward selection (SBS), respectively. LFS
[11] restricts the number of features that are considered in each step of the forward se-
lection. The greedy stepwise feature selection algorithm implemented in Weka [23] can
move either forward or backward. Given that LFS performs a forward selection, a back-
ward search is chosen in greedy stepwise search to form a greedy stepwise backward
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Table 2. Experimental Results

Dataset Method Ave-Size Best Ave-Test-Acc Std-Test-Acc T
All 13 76.54 -

Wine PSOFS 7.93 98.77 95.6 1.7953 -
PSO42 6.73 98.77 94.86 1.8628 -
PSOR 4.75 100 96.70 3.10
All 18 83.86 -

Vehicle PSOFS 9.5 87.01 85.03 0.8899 =
PSO42 10.33 87.01 85.44 0.8372 +
PSOR 5.87 86.22 84.72 0.8720
All 34 83.81 -

Ionosphere PSOFS 12.47 93.33 88.41 2.3079 =
PSO42 3.13 91.43 86.69 1.6444 -
PSOR 9.7 91.43 88.63 1.6765
All 60 76.19 -

Sonar PSOFS 26.1 84.13 77.3 3.5765 -
PSO42 11.23 84.13 77.94 3.2104 =
PSOR 14.33 84.13 78.94 4.0185
All 166 83.92 =

Musk1 PSOFS 85.93 88.81 84.61 2.0568 =
PSO42 77.3 89.51 84.87 2.7042 =
PSOR 35.03 90.21 83.12 3.4196
All 279 94.46 -

Arrhythmia PSOFS 118.73 95.14 94.56 0.3517 =
PSO42 69.77 95.59 94.77 0.4495 -
PSOR 44.17 95.59 94.96 0.38
All 500 70.9 -

Madelon PSOFS 259.07 78.97 76.35 1.0909 -
PSO42 206.57 84.23 78.81 3.1171 -
PSOR 54.39 85.13 83.40 2.0368
All 649 98.63 -

Multiple features PSOFS 297.07 99.2 99.0 0.0934 +
PSO42 314.5 99.2 99.0 0.0935 +
PSOR 51.07 99.23 98.84 0.1751

selection (GSBS). The algorithm PSOFS [27] selects features by using continuous PSO.
The other PSO based algorithm, PSO42 [29], introduced a new initialisation strategy
and pbest and gbest updating mechanism.

Eight datasets (Table 1) chosen from the UCI machine learning repository [2] are
used in the experiments. These datasets have a different number of fetures, classes and
instances. For each dataset, all instaces are randomly divided into a training set and a
test set, which contains 70% and 30% of the instances, respectively. Up to 500 training
instances are used in the statistical clustering method to group features into different
clusters, where the number of clusters are listed in the second column in Table 1. In
the experiments, the classification/learning algorithm is K-nearest neighbour (KNN)
where K = 5. The parameters of PSO are set as follows [21]: w =0.7298, c1 = c2 =
1.49618, vmax = 6.0, population size is 30, the maximum number of iterations is 100.
The fully connected topology is used. All the PSO based algorithms have been run for
30 independent times on each dataset. A statistical significance test, Wilcoxon signed-
rank test, is performed to compare the classification accuracies of different algorithms.
The significance level was set as 0.05.
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5 Experimental Results

Table 2 shows the experimental results of the PSO based algorithms, where “All” means
that all the available features are used for classification. “Ave-size” shows the average
number of selected features over the 30 runs. “Best”, “Ave-Test-Acc”, “Std-Test-Acc”
illustrate the best, average and standard deviation of the testing accuracies over the 30
independent runs. T shows the results of the statistical significance tests between the
accuracy of PSOR and other algorithms. “+” or “-” means that the algorithm achieved
significantly better or worse classification performance than PSOR (the more “-”, the
better PSOR is). “=” means there is no significant difference between them.

Table 3. Results of GSBS and LFS

Method
Wine Vehicle Ionosphere Sonar

# Features Accuracy(%) # Features Accuracy(%) # Features Accuracy(%) # Features Accuracy(%)
GSBS 8 85.19 16 75.79 30 78.1 48 68.25
LFS 7 74.07 9 83.07 4 86.67 3 77.78

Method
Musk1 Arrhythmia Madelon Multiple Features

# Features Accuracy(%) # Features Accuracy(%) # Features Accuracy(%) # Features Accuracy(%)
GSBS 122 76.22 130 93.55 489 51.28 - -
LFS 10 85.31 11 94.46 7 64.62 18 99.0

From Table 2, it can be observed that the number of features selected by PSOR is
significantly smaller than the total number of features, but using the selected features
only, the 5NN classification algorithm achieved significantly better or similar classifica-
tion accuracy. For example, on the Multiple Features dataset, PSOR selected on average
51 features from the original 649 features, but significantly increased the classification
accuracy. The results suggest that PSOR can be successfully used for feature selec-
tion to reduce the dimensionality of the data and significantly increase the classification
performance over using all features.

Comparing PSOR with PSOFS, the feature subsets selected by PSOR are smaller
than that of PSOFS on all the eight datasets. In terms of the classification performance,
PSOR achieved similar or significantly better classification accuracy than PSOFS on
seven of the eight datasets. Comparing PSOR with PSO42, it can be observed that
PSOR selected smaller feature subsets and achieved similar and significantly better
classification performance than PSO42 on six of the eight datasets. The results suggest
that PSOR using the new representation can effectively utilising the statistical clustering
information to improve the classification performance over PSOFS and PSO42 and
further reduce the number of features.

5.1 Further Comparisons with Traditional Methods

The results of LFS and GSBS are shown in Table 3. Since LFS and GSBS are determin-
istic algorithms, each of them produces only a single solution on each dataset. Since the
experiment of using GSBS on the Multiple Features dataset cannot finish within two
days, the results are not listed in the table.
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Comparing the results of PSOR in Table 2 with the results in Table 3, it can be seen
that LFS selected a smaller number of features than PSOR, but achieved significantly
worse classification accuracy than PSOR. PSOR outperformed GSBS in terms of both
the number of features and the classification performance on all datasets. The results
show that PSOR, which is based on PSO and the feature clustering information, can
better explore the solution space to obtain better feature subsets than LFS and GSBS.

6 Conclusions and Future Work

The goal of this paper was to develop a new approach to using the statistical clus-
tering information in PSO for feature selection. The goal was successfully achieved
by developing a new representation scheme in PSO. By using the new representation,
the dimensionality of the search space is reduced over the traditional representation
scheme and the statistical clustering information can be incorporated in the feature se-
lection process. We have conducted the experiments to compare the new algorithm with
two conventional methods and two existing PSO algorithms without using statistical
clustering information on eight datasets of varying difficulty. The results show that the
proposed algorithm can effectively utilise the statistical clustering information in PSO
for feature selection, which results in smaller feature subsets and better classification
accuracy than the existing methods.

In future work, new search mechanisms will be investigated in PSO and statistical
clustering for feature selection to further increase the classification accuracy and reduce
the number of features. Meanwhile, it will be interesting to split the data multiple times
to test the stability of the feature selection algorithms.
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